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A THEORETICAL CONTROL STUDY OF THE 
BIOLOGICALLY INSPIRED MANEUVERING OF A SMALL VEHICLE 

UNDER A FREE SURFACE WAVE 

INTRODUCTION 

Biologically inspired maneuvering of man-made vehicles has the potential of 
being of value to the Navy. Aquatic animals have the ability to perform intricate 
maneuvers with great agility and, at the same time, very quietly. Fish, for example, have 
several configurations of fins including the dorsal and caudal fins. These fins provide a 
remarkable ability to fish for swift and complex maneuvers (Wu et al.1 and Azuma2). 
Apparently, biologically-inspired dorsal and caudal fin-like control surfaces have a great 
potential for maneuvering small agile vehicles at low speed. However, application of 
these control surfaces to small undersea vehicles for quiet but agile maneuvering has 
remained unexplored. 

Presently at the Naval Undersea Warfare Center (NUWC) Division, Newport, RI, 
considerable effort is in progress to study fish morphology and locomotion 
(Bandyopadhyay,3 Bandyopadhyay and Donnelly,4 and Bandyopadhyay et al.5). 
Experimental results conducted using several species of fish have provided interesting 
data for the design of control surfaces for low-speed maneuvering. Bandyopadhyay and 
co-researchers have designed caudal- and dorsal-like fins and studied the hydrodynamics 
of oscillating and cambering fins. The flow pattern and vortices formed have been 
recorded (Bandyopadhyay et al.6) in tests performed in tow tanks and water tunnels, and 
the forces and moments produced by the control surfaces have been measured. Related 
research to produce propulsive and lifting forces using flapping foil devices has been 
conducted by several authors.7"12 However, as yet, control systems synthesis using caudal 
and dorsal fins has not been accomplished. 

The contribution of the present research lies in the design of control systems for 
low-speed maneuvering of small undersea vehicles using dorsal- and caudal-like fins 
(figure 1). It is assumed that the hydrodynamic parameters of the vehicle are imprecisely 
known and surface wave-induced forces are constantly acting on the vehicle. Although 
the design approach can be extended to yaw control, in this study, only control in the dive 
plane is considered. Using the dorsal fin, a normal force is produced for depth control 
and flapping foils produce pitching moment for pitch angle regulation. For simplicity, it 
is assumed that the vehicle is equipped with a control mechanism that causes the vehicle 
to move forward with a uniform velocity. For the depth trajectory control, an adaptive 
sliding mode control law (Slotine and Li,13 Utkin,14 Narendra and Annaswamy15) is 



designed for the continuous cambering of the dorsal fins in the presence of seawaves. 
The sliding mode control law is nonlinear and discontinuous in the state space and has an 
excellent insensitivity property with respect to disturbances and parameter variations. 

WAVE PROPAGATION 

OSCILLATING 
FLAP #2 

DIVIDER 
PLATE 

CIRCULAR TO FLAT 
TRANSITION 

where: 

Xi -Z/= Inertia! Coordinate System (Origin at the Calm Surface). 

Xj-Zj = Translation of Inertial Frame (Origin at Geometrical Center). 

Xß-Zß = Body Fixed Coordinate System. 

(Note that the long dorsal fins are actually mounted in the horizontal plane. The caudal fins are 
also mounted in the horizontal plane and are akin to flukes in whales.) 

Figure 1. Schematic of the Maneuvering Devices (Dorsal and Caudal Fins) 
and Axisymmetric Cylinder 



The hydrodynamics of flapping foils is rather complex. Although design based on 
the continuous control of the angular velocity of the fins is more efficient, forces and 
moments produced by the caudal-like fins as functions of angular position and velocity is 
not well-understood. This study is limited to a periodic (sinusoidal) actuation of flapping 
foils. It is assumed that the foils have identical periods of oscillation that do not 
necessarily coincide with the period of the seawave. The amplitude and phase of force 
and moment acting on the vehicle caused by the disturbing wave is assumed to be 
unknown. Assuming that the pitch angle deviation is small, a linear discrete adaptive 
predictive control system (Goodwin and Sin16) is designed for the pitch angle control. In 
order to develop periodic moment, the maximum travel of the tips of the foils is adjusted 
periodically at the completion of the cycle. Interestingly, for the design of the pitch 
controller, it is seen that Strouhal numbers, which characterize the moment produced by 
the foils, are key control variables. In the closed-loop system using the dorsal and caudal 
fin controllers, depth control and pitch angle regulation in the dive plane are 
accomplished. 

MATHEMATICAL MODEL OF DIVE PLANE MOTION 

Consider the vehicle motion in the dive (vertical) plane (figure 1). The heave and 
pitch equations of motion are described by coupled nonlinear differential equations. In a 
moving coordinate frame fixed at the vehicle's geometrical center, the dimensionless 
equations of motion for a neutrally buoyant vehicle are given byr'" .17-19 

m(w -uq- zGq2 - xGq) = zqq + z^w + zqq + zww 

nose 

-CD   J b(x){w - xq)\w - xq\dx + zbb + fp + fd, 
tail 

Iyq + mzG{ü + wq)-mxG{w-uq)= Mqq + M^w+ Mqq (1) 

nose 

+ Mww + CD  J xb(x)(w - xq)\w - xq\dx 
tail 

-xGBWcos6 - zGB Wsm§ + mp+md , 

where 0 = q, z = -usin0 + wcos0, xGB =xG -xB, zGB =zG -zB, Sis the camber of 
the dorsal fins, m = mp] + mp2, mpj is the moment produced by the z'th foil, fp is the net 
normal force produced by the flapping foils, and md and/rf are the force and moment 
acting on the vehicle caused by the surface wave. Here it is assumed that the forward 
speed is held steady (u = U) by a control mechanism. These nondimensionalized 
equations of motion (equation (1)) are obtained by dividing the original force and 
moment equations by \pL2V2 and ^pL3V2 where L and V = U are the reference values 
for length and velocity, and the time is scaled by (U/L). Thus z5,fp, and mp are the 
hydrodynamic coefficients of the vertical force and the pitching moment. 
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where   Z* = Target Depth, 
0 = Pitch Angle, 
9* = Equilibrium Pitch Angle, 
S,i, St2 = Strouhal Numbers of Foils, 
A,, A2 = Maximum Travel of Foils, 
5 = Camber of Dorsal Fins. 

Figure 2. Closed-Loop System (Including the Caudal and Dorsal Fin Controllers) 

Bandyopadhyay et al.20 have experimentally measured the forces and moments 
acting on winged bodies submerged in proximity of surface waves. The disturbance force 
and moment caused by surface waves are periodic, which can be expressed by a Fourier 
series. For simplicity in presentation, consider that^ and md are well approximated by 
their fundamental components and are given by 

fd = Fd cos{ü)0t + a0) 

md = Mdcos{o)0t + a0), 
(2) 



where co0 is the fundamental frequency of the surface wave, Fd and Md are amplitudes, 
and a0 is the phase angle. 

The dorsal fin produces a normal force (zsS) proportional to the camber 8 of the 
fins and can be continuously varied for the purpose of control. The forces and moments 
produced by the flapping foils are quite complex and depend on motion pattern (clapping 
and waving) as well as on the frequency of oscillation, maximum flapping angles, axis 
about foils oscillate, and the speed U. The choice of flapping parameters and the mode of 
oscillation can produce a variety of control forces and moments. Based on the 
experimental results and analysis, it had been shown by Bandyopadhyay and 
coworkers3'4'6 that flapping foils produce periodic forces whose period is equal to the 
period of flapping. Therefore, their periodic forces can be expressed by a Fourier series, 
but are dominated by their fundamental components. Although the approach of this report 
can be generalized, for simplicity, it is assumed that the flapping foils produce forces and 
moments of the form 

fp=Flo(stl,ayf) + F20(st2,(of) + Fu(sn,oif)cos((oft + al) 

+ Fl2(st2, co y) cosfcoy t + a2) 
(3) 

mp = M10(stl,<of)+M20(st2,<Of)+Mu(sn,<of)cos(<Qft + al) 

+ Mu[tt2,(o J-)COS((OJ- t + cc2), 

where Sti is the Strouhal number defined as 

and is a dimensionless angular frequency parameter, coj- is the frequency of oscillation, 
and Ai is the maximum cross-stream travel of the flap tip. It is important to note that the 
Strouhal number of each foil is a key control variable that can be altered by the choice of 
frequency and the tip travel Ai independently, and, thus, one can control the contribution 
of each foil in force generation for the purpose of control. Indeed, as shown by 
Bandyopadhyay,3 by an analysis of a simplified two-dimensional momentum model, 
lateral steady forces produced by the two foils in clapping mode are 

F10(5rt,/1) = /,/«iC/1sinU-/2), (5) 

and 

F2o(St2J2) = -f2m2U2 sin{A2/2), (6) 



where for the z'th flap, fh is the frequency of oscillation, mt is the mass of water it affects, 
and Uj is the velocity of water caused by the flapping action at an angle of tan-1 (^H to 
the axial direction where Cfr is the chord. Thus, for Stl = Sn and A] = A2, Fw + F20 = M]0 

+ M20 = 0 and by flapping, one produces pure sinusoidal forces of amplitudes Mu and 
M22, and if Sn * Sn, flapping action yields nonzero (positive or negative) constant force 
component Fl0(Stl,fl) + F2o(St2,f2), as well as a time-varying periodic component. 

For the purpose of control, in this study, it is assumed that the two foils are 
controlled independently and oscillate with the same frequency coß but the maximum 
travel of each tip At is varied at the interval of Tp, the time period of oscillation of foils. 
A continuous change of Ax and A2 is not allowed here since the intention is to develop a 
periodic force by flapping, although such an imposed mode of oscillation does create a 
complex control design problem. Note that we are trying to imitate biolocomotion for 
slow speed maneuvers. 

The problem of interest here is to design a control system for the independent 
control of depth (z) using dorsal fins and stabilize the pitch angle dynamics using 
flapping foils. This decomposition of the dive plane control problem simplifies the 
controller design. An adaptive sliding mode control system is designed for large 
magnitude depth (z) control using only translatory dynamics, and a discrete adaptive 
predictive controller is designed for pitch angle regulation separately based on the 
decoupled rotational dynamics of the pitch angle of the vehicle. A judicious choice of 
controller design is essential since the dorsal fins are continuously cambered, the 
parameters of oscillations of the foils can be altered only at the completion of the cycle of 
flapping at discrete, but uniformly distributed, instants of time. 

The system (equation (1)) can be written in a vector form as 

w 
-t/sinG + wcosG 
ax w + a2q + a3 (xGB cos 9 + 
a5w + a^a + a-,(x 

LIU T (TL;U50 

a2q + a3(xGB cos8 + zGB sinB) + aA{w,q) 
a6q + a7 (xGB cosG + zGB sin 9) + a% (w, q) 

+ dx 

+ d2 

0    0    0] 
~8 
fp 

-mP- 

■#21 -#22 -#23 

-#31 -#32 -#33 
0      0     0 

(7) 

or 

^A^d^ + BU, (8) 

where  £, = (z, w, q, 6)    e R 4 is the state vector (T denotes transposition), 

Uc = is, fp,mp)   is the control vector, 

B = (Bij), 



A = (m - z& \ly ~Mq)- (mxG + zq){mxG + M*), 

B22 = (ly-M4)A~\ 

B2\ = z8522 

B2Z = (mxG + zq)A~\ 

#32 = (M^,+mxG)A-\ 

2?31 = B32z^ 

#33 = (m-z^)A~\ 

ax-- = [(ly - Mq)zw + (mxG + Z^MW]A-\ 

a2-. = [(7y - Mg)(m + zg) + (mxG + zg)(^a ~ ^G)]A~
1
 ,                                               (p) 

a3-- = -(mxG+zq)WA~\ 

a4 -- = [(ly - Mq)lm + (mxG+zq)lq +(ly - Mq)mzGq2-(mxG+z^)mzGwq]A-\ 

a5-- = i(m ~ zco )Mw + imxG + Mw)Zw)A~l> 

06- = [(m -z(i)\Mq-mxG) + {mxG + m^ ){m + zq )]A_1
 , 

a7-- = -(m-Z(b)WA-\ 

ar8 = = [(m-zä)lq + (mxG + M^)lv -(m-zä)mzGwq + (mxG + M^)mzGq2]A~\ 

di- = [(ly - Mq)fd + (mxG + zq)md]A-\ 

di = [(m - z^ )md + (mxG + M^)fd JA-1, 

mdlw, Iq are the cross-flow integrals where 

nose 

IW = CD   J b(x){w - xq)\w - xq\dx, 

and 
tail 

(10) 
nose 

Iq=CD  J xbix){w - xq)\w - xq\dx. 
tail 

The matrices A and B are obtained by comparing equations (7) and (8). 

For equation (8), we are interested in designing a dorsal fin control system for the 
depth control and a caudal fin control system for the pitch angle regulation. For the 
derivation of the control system, it is assumed that various hydrodynamic parameters and 
the amplitudes and phases of the force and moment induced by the surface wave are 
unknown. 

7 



DORSAL FIN CONTROL SYSTEM 

In this section, a dorsal fin control system is designed for depth control. Since 
depth (z) control is of interest, an output controlled variable 

y0=z (ii) 

is associated with the system (equation (8)). Consider a reference trajectory, yr(t), 
generated by a second order command generator 

% + 2& °>r yr + <°hr =&?z*, (12) 

where z* is the target depth coordinate, E,r > 0, and cor > 0. The parameters E,r and cor are 
properly chosen to obtain the desired command trajectories. The objective is to steer the 
vehicle using the dorsal fins so that^0 = z(f) asymptomatically follows »(/)• Asy0 tends 
to yr(i), the vehicle attains the desired depth since yr converges to z*. 

For the derivation of a controller, an adaptive sliding mode control technique13"15 

is used and the sliding surface is defined as *e> 

S = e + Ae, (13) 

where A > 0 and e = (y0 -yr) = z -yr is the tracking error. The sliding mode control law 
is a discontinuous function and switches whenever the trajectory crosses the surface S = 
0. In using a sliding mode control law, the evolution of trajectory proceeds in two phases. 
In the first phase, which is called the reaching phase, trajectory starting from any initial 
condition is attracted toward the switching surface. The subsequent motion takes place 
on the surface 5 = 0 and the trajectory essentially slides along the switching surface. This 
is the second phase of motion called the sliding phase. 

Consider the motion during the sliding phase. During the period of sliding, one 
has S(t) = 0, which implies from equation (13) that 

e + Ae = 0. (14) 

Thus, during the sliding phase 

e(t) = ex^e(ts), (15) 

where ts is the instant when the trajectory has reached the surface S = 0. According to 
equation (15), it follows that e{t) -^ 0, that is, z{t) -* z* as t -» oo and the desired depth 
control is accomplished. Obviously, the motion during the sliding phase is insensitive to 
any disturbance input and uncertain parameter variations. 



Now consider the design of a controller so that the trajectory beginning from any 
initial condition is attracted toward the switching surface. In obtaining a control law, 
differentiating S(f) along the trajectory of the system (equation (8)) gives 

S = e + Ae 
= z-zr+Ae 
= -Ucosdq-qsmdw + cosßw-zr+Äe ^   ' 
= -(if cos6 + sin0w)q + cos6ar2{^,d-[) + B2uc -zr + Ae, 

where ar2(^,d{) and B2 are the second rows of vector A and matrix B, respectively. Since 
depth control is to be executed by the dorsal fins, equation (16) is rewritten in the 
following form: 

S = cos 0B2 j [ a(& fp, mp, t) + Aa(4, dx, fp, mp, t) + rf y/(£) 
(17) 

+ Fdl cosco0t + Fd2 sinco01 + S], 

where B^xdx = Fdl cosco01 + Fd2 smco01. Here a and \\i are known functions, but Act, the 
parameter vector 77, the amplitudes Fj, and F^2, and B2\ are unknown. It is assumed that 
the sign of B2\ is known that 161 < Qm <n/2. Without loss of generality, it is assumed 
that B2\> 0. The known functions a and yare computed using the nominal set of values 
of various parameters of the system. 

The camber Sof the dorsal fin is continuously varied to steer any trajectory 
toward the switching surface. Assuming that the frequency co0 of the surface wave is 
known, a control law is now chosen as 

8 = -a[%Jp,mp,t)-riTy/(£) - Fdx coscoj 

(18) 

- Fdl sineoJ-fiS-K sgn(S), 

where /J. > 0, 77 and Fdi are estimates of 7 and Fdi, respectively, and K is a constant gain 
yet to be determined. Substituting control law equation (18) into equation (17), gives 

S = cos6B2X[Aa(%,dufp,mp,t) + rjTy/{£) + Fdx cosco0t 
(19) 

+ Fd2 sin co0t - K sgn S - pS], 

where rj = 7 - 77, and Fdi = Fdi - Fdi. 

Now, adaptation laws for fj, Fdi, and gain K must be chosen so that the surface S 
becomes attractive to any trajectory of the system. In deriving the adaptation law, 
consider a Lyapunov function, 



V0(s,?j,FdvFd2) = ((B2lcoserlS2 + V"A>7: + Fd]L2+F;2L3)/2, (20) 

where L] is any positive definitive symmetric matrix, L2 > 0 and L3 > 0. The derivative 
of V0 is given by 

V0 = S(ACC + r/Ty/ + Fdl coscoj + Fd2 sina>0t- KsgnS) 

-/jS2 + ffTLl9j +L1FdiFdV+LiFdlFdi- (21) 

The function V is a positive definite function of S, rj, Fd], Fd2 since | cos 9\ > cos 9m and 
V0 (0) = 0. In order to ensure that the surface S = 0 is attractive, adaptation laws and K are 
chosen so that V0 satisfies Vo<0. 

In view of equation (21), one chooses the adaptation laws of the form 

T}=-T]=L[1ipS, 

Fd\ =- Fd\ = Li S cos co0 t, (22) 

Fd2 =-Fd2=Lil Ssin co0t, 

and the gain K is chosen to satisfy 

K = kl(&dl,fp,mp) + s, (23) 

where the function kx is a bound on the uncertain function satisfying 

h^Aafad^f^m^tj. (24) 

Substituting adaptation law (22) in equation (21) now yields 

Vo<-s\S\-juS2<0. (25) 

Since V0 < 0, it follows that S, fj, and Fdi are bounded. Furthermore, in view of equation 
(25), one has 

00 

I (juS2 + s\S\)dt < no) - F(oo) < oo, (26) 
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which implies that S is a square integrable function. Furthermore, boundedness of S 
implies from equation (13) that e,e are bound. Assuming that the reference trajectory 
yr, and yr are bounded, it follows from boundedness of e that w is bounded (in view of 
the computation for z in equation (7)). Then one concludes that S(t) -» 0, as t —» oo, 
assuming that 6,q are bounded. This implies that the tracking error (z -yr) —» 0 as t —» oo. 
This completes the depth control system design. 

The control law (equation (18)) includes a switching function that essentially 
compensates for the uncertain function Aa and the adaptive component depending on fj 
compensates the linearly parameterized uncertain function rj y/. For countering the 
wave effect, sinusoidal components of frequency co0, which are functions of the 
parameters Fdj, suffice. It is shown that parameter divergence may occur often in the 
adaptive system in the presence of modeling error (Sastry and Bodson21). There are 
several ways by which divergence of parameters [rj,Fdi) can be avoided. Since the 
upper bounds on the hydrodynamic parameters can be assumed to be known, a projection 
method can be used to modify the adaptation law (equation (22)). According to the 
projection method,21 the estimates ß and Fdj are set to their limiting values whenever the 
trajectory (fj(t), Fdiit)) tries to escape its permissible range. 

Assuming that error yr (t) -» z*, and yr ->■ 0, the control law (equation (18)) 
asymptotically decouples (0,q) dynamics from the remaining variables. Thus, the 
residual dynamics of the system essentially describe the rotational pitch motion. This 
residual dynamics, when the motion is constrained so that the error v -yr = 0, is called 
the zero-error dynamics (Slotine and Li13). For satisfactory performance in the closed- 
loop system, the state variables 9 and q associated with zero-error dynamics must be 
bounded. In the next section, control of pitch angle using flapping foils is considered. 

Remark 1: In the derivation of the depth controller, it has been assumed that the 
frequency co0 of the surface wave is known. However, it is pointed out that such an 
assumption is not essential and one can set 

Fdi.=Fdi = 0,    i=l,2 (27) 

in equations (17) and (18) for control, but in this case one has a large value of k} 

satisfying kx > \Aa\.  This requires a large gain k and, thus, larger magnitude of Sfor 
control. 

Synthesis of the discontinuous control law may lead to control chattering, which 
is undesirable. A way to avoid this phenomenon of chattering is to use an approximate 
but continuous control law instead of equation (18). This can be done easily by replacing 
the sgn function in equation (18) by a sat function where 
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satGS) = 
(S/£j), if LSI < 3 
1, if S>s{ 

[-1,       if5<-£i 
(28) 

where sj > 0 is the boundary layer thickness. Implementation of the approximate 
controller may lead to small terminal error, but this error tends to approach zero as sx 

tends to 0. 

FLAPPING FOIL CONTROL OF PITCH DYNAMICS 

In this section, control of rotational pitch dynamics (zero error dynamics) is 
considered. First, a discrete-time linear model for pitch control is obtained. 

DISCRETE-TIME PITCH DYNAMICS 

Since the sliding mode controller asymptotically controls ztoz*, the zero error 
dynamics is obtained from equation (1) by setting e = z- yr = i = 0. Also, when 
e(t) = 0, e(t) = z-yr = z = 0, one has for small 9 

w = U0. (29) 

It is assumed that the two foils oscillate with identical frequency o)f. The 
maximum travel Aj of each foil-tip is independently controlled periodically at the interval 
of Tp\= 2x/cofJ.  This way the Strouhal numbers St, and St2 of the two foils are 
independently controlled. The moments, mpi[sti,cof\ and forces, fpi[sti,a>f) (i = 1,2), 
generated by the flapping foils are nonlinear functions of the Strouhal numbers. Since cof 

is a constant, expanding fpi(sn) and mpj{s,) in the Taylor series about Sn = St2 = S*, a 
constant, and neglecting higher order terms gives 

B33^pi(Sti) + B32fpi^B: pi ~ ^33 
^io(S*t)    cMxfä) 

aSt; cSt; 
\COj-t + «(•) 

+ B- 32 
cFi0(s*) + c>Fli(^ 

<35„ o5ti 
{s*tl)cos{coft + at] Aba(OSti,  i = l,2, (30) 

where Sti = Sti - St. 

Next, pitch angle must be regulated to 6*, a constant. Using equations (21), (22), 
(25), and (29), the pitch dynamics about (0*,q* = O) obtained from (7) are given by 
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a6     a5U + a7(zGB cos 9* -xGB sin 9*) 
1       0 

+ (bnSü+b22St2+D2(tj) 
(31) 

(32) 

where for small 9 

D2=d2+ a7xGB cosQ*+a% + B3]S + a5U9*+a7zGB sin9*. 

The system (31) can be written as 

£ Ä Ap5c+b\bnSn +b22Sl2 +D2(t)], 

where 

x = (q,9)\ 9=9-9*,Ap=[^   f + aAz™°°S°* +X™™° 

b}=[l,0]T. 

The solution of equation (24) is given by22 

t 

HO = eAr{t~to)x(t0) + J eApit~T\[bn(T)Sa(T) + b22(r)St2(r) + £>2(r)]Jr.(33) 

and 

Since the control input Sti is to be implemented as a piecewise constant function 
changing at the interval Tp, a discrete-time model is obtained from equation (33) of the 
form 

3c a+0 = ACX a)+Bcst a)+DC a) , (34) 

where (Jk +1) denotes a + l)Tp, St(t) = St(k) = [StV(k\St2Vd]T for tz[kTp{k + \)Tp), 

and 

(k+\)Tp 

^[(M^-rMMrKMr)]^ (35) 
w„ 

(*+i)r. 

Dc(k)=    j   eAkM)T>-\D2(T)dT. 
kT„ 
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Let Ac = (aCIJ), Bc = [B^B
7
^ = (^) for i,j = 1,2, and Dc(k) = (AI , A2f- Note that Bc 

is a 2x2 constant matrix since integration in equation (35) is performed over one period 
Tp and cof = 2nTp , but Dc(k) depends on kTp due to the fact that cof* co0; that is, the 
flapping frequency differs from the frequency of the wave. 

AUTOREGRESSIVE MOVING AVERAGE MODEL 

Next, a discrete adaptive predictive control technique is used for pitch control.20 

For this, an expression for the predicted value of Q(k) is obtained and the advance 
operator qa is introduced and defined as 

qazs(k) = zs(k + \) (36) 

for any discrete signal zs(k). Using equation (34) gives 

qaq(k) = acUq(k) + acU0(k) + BclSt(k) + Dcl(k) (37) 

qa0(k) = ac2lq(k) + ac220(k) + Bc2St(k) + Dc2(k). (38) 

Equation (37) gives 

q~lq(k) = qf[acUq(k) + acl26f(k) + BclSt(k) + Dcl(k)]. (39) 

Operating by q~l equation (38) gives 

Oik) = q~a
l[ac2Xq(k) + ac22e(k) + Bc2St(k) + Dc2{kj\. (40) 

Substituting for q'a
xq{k) from equation (39) into equation (40) gives 

9tt) = ac21qf[acUq(k) + acUQ(k) + BclSt(k) + Dcl(k)] 

+^1k22ea)+Bc2sta)+Dc2a)]. (4i) 

Using equation (40), one obtains 

qfqtt) = [q-a
le{k) - q~2 {ac220(k) + Bc2St(k) + Dc2(k)}]/ac2l, (42) 

which is substituted into equation (41) to yield 
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or 

where 

Oik) = acl j [qJOUd - qf {ac220(k) + Bc2St (*) + Dc2 (*)}] 

+ ac2lq;2{acl20(k) + BclSt(k) + Dcl(k)} 

+ q'a\ac71e<to + Be2St(k) + Dc2(k)]. (43) 

Rearranging terms in equation (43), one has 

[l + (-acll -ac22)q-1 +{acUac22 -ac2lacU)q;21p(k) 

= läl[Bc2+(ac2\Bc\ -acuBc2)g^]st(k) 

V [ Aa (*) + "c2iq~alDcl(k)-aelxq-lDc2(*)] (44) 

(\ + afxq~l +af2q-1)e(k) = q-a\Bfx+Bf2q-%{k) + q~xafd{k), (45) 

fl/> = -flcii - ac22 

aj2 = ac\\ac21 ac2\ac\2 

Bfi = Bc2 

Bf2 = ae21Bel ~ac\ Bc2 

(46) 

afd(k) = Dc2(k) + ac2]q;}Dci(k)-acUqc-
lDc2(k) 

The discrete-time model of equation (45) is called an autoregressive moving 
average (ARMA) model. The ARMA model can be expressed in an alternative predictor 
form using equation (46) rewritten as 

0(k +1) = (-afl -af2q;l)0(k) + (ßfl + Bf2q~%(k) + afd(k). (47) 

This is a useful representation of the pitch dynamics. It is assumed that the 
parameters aß, Bß, and the signal afj{k) are unknown. For the regulation of 6(k), one can 
design predictive control laws if the estimates of the unknown parameters and aß(k) are 
known. 

For the derivation of a control law, it is assumed that 

afd(k + l)*afd(k). (48) 

Note that if the wave frequency co0 is equal to the frequency of flapping and if 
either 8 is small or 531 « 0, then a/d(k +1) = a/a(&) for all k. In practice, it has been found 
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that the predictive control technique works well even when parameters vary slowly and 
the condition of equation (48) is violated. 

Under the assumption of equation (48), subtracting q~^Q{k + 1) from (47) gives 

0(k +1) = [- afl + (fl/1 - afl)q-1 + af2qf]d(k) 

+ [Bn+(Bf2-Bfl)q;l-Bf2q;2]st(k)Ao(q-l)0(k) + ß(q-l)St(k),        (49) 

where 

v0 = ~af\^ = fl/i -af2, u2=af2,ß0=Bfl,ßl= Bf2 -Bfl,fa= -Bf2 , 

fal)=A>+*M*:l)> (50) 

ß\<Ta) = b+ßl<fa- 

ADAPTIVE PITCH ANGLE CONTROL 

Assuming that the parameters of equation (49) are known, now a weighted one- 
step ahead pitch control law is obtained. For this a suitable performance index of the 
form 

j{k+\) = ^[e(k+\)-e;(k+\)}2 + 
l-x^\st{kf (5i) 

is^chosen, where Ad>0 and 0T (£) is a suitable reference trajectory to be followed by 
0(k). Note if 0* (k) -» 0, then#(k) -^ 0*. By the choice of a suitable value of Ad, a 
compromise between bringing 0{k +1) to 0*(k +1) and the amount of control effort 
expended is achieved. 

Substituting 0(k+l) from (49) and (51) and for minimizing Jdifferentiating with 
respect to St(k) gives 

ßT
o[ü(q-a

l)0{k) + ß0St(k) + ß'(q;%(k -1) - 0*(k +1)] + ÄdSt(k) = 0.       (52) 

Solving (52) gives the control law 

St(k) = (ÄdI + ßlßJlß^[-o(q:1)0(k)-ß'{q-a%(k-l) + 0;(k + l)].     (53) 

Notice that the Strouhal number at the instant kTp depends on the present and past values 
of 0 and the past values of input St, St. 
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Since §ti(k) e[0,Stim] where Stim is the same maximum allowed value of Sti, 
control input Sti(k) given in (53) must be modified to meet the practical constraint on its 
magnitude. 

A modified control law for pitch control is 

Sti(k) = 
Sti(k),   ifO<S'ti(k)<Stim 

0,   ifS'ti(k)<0 , (54) 

Stim     ■>     " S'ti\k) > Stim 

where S't = [S'a,S't2)   denotes the expression in the right-hand side in equation (53). 

PARAMETER ESTIMATION 

For synthesizing the control law, the parameters in equation (49) must be known. 
A practical solution to this problem is to obtain an estimate of these unknown parameters 
using an appropriate parameter identification technique. There are several kinds of 
algorithms based on the projection and the least square methods20 that can be used to 
obtain the estimates of these unknown parameters ß0,vi,andßi in equation (49). 
Equation (49) can be written as 

0(k + \) = f(k)po, (55) 

where 

ftk) = [(l <Ca  lä2W(k),{l q~X of)sf(k)] 

p0=[(u0,ol,ü2)
T,ßT,ßl

T,ß[]. 

Using a simple projection algorithm for parameter estimation, the estimate 
p0 of p0 is obtained using an update law given by20 

p0(k) = p0(k -1) + °Tk^(k~Z   „[*(*)" f^ ~ !)Ä(* -1)] cx +(p (k-\)(p(k-\) 
0 < fl(Jfc) < 2 (56) 
cj >0. 

Define 

£te1)=£0+%ä1+%ä2 

(57) 
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Then the adaptive control law for pitch angle control is given by 

St(k) = {ÄI + ßlßj\-6(q;l^(k)-ß'(q-%(k-l) + ß;(k + l)]. (58) 

This completes the design of flapping foil controller. 

Now the adaptation law for adjusting the maximum travel of the tips of the two 
foils is easily computed using the definition of the Strouhal number and required 
adaptation scheme is given by 

Ai(k + \) = 
USti(k) 

J = 12, (59) 
[cOfl 2TZ ) 

where Sti(k) = Sti(k) + Sl 

The complete closed-loop system is shown in figure 2 

CONCLUSIONS 

A theoretical study for the dive plane control system design for biologically 
inspired maneuvering of low speed, small undersea vehicles using dorsal and caudal 
fin-like control surfaces was considered. Normal force produced by the dorsal fin was 
used to control the depth of the vehicle and two flapping foils were used for the pitch 
angle control. An adaptive sliding mode control law was derived for the reference depth 
trajectory tracking. For the design of this control, a nonlinear vehicle model was 
considered for which the system parameters were assumed to be unknown, and it was 
assumed that sinusoidal disturbance force and moment are acting on the vehicle caused 
by surface waves. In the closed-loop system, including the sliding mode controller, depth 
control was accomplished and rotational pitch dynamics were asymptotically decoupled. 

For the decoupled pitch dynamics, assuming that the pitch angle perturbations 
were small, a linear deterministic autoregressive model was derived. For the pitch angle 
control, the Strouhal numbers were chosen as key input variables. The Strouhal numbers 
of the two foils were periodically changed (at intervals of the time period of oscillations 
of the foils by altering the maximum tip travel). Both foils were oscillating at the same 
frequency. Using projection algorithms, the parameters of the pitch dynamics were 
identified. These estimated parameters were used to design an adaptive predictive control 
system. The adaptive predictive controller accomplished regulation of the pitch angle. 
Thus, in the complete closed-loop system, including the adaptive sliding mode and 
adaptive predictive controllers, dive plane control of the underwater vehicle can be 
accomplished in the presence of large parameter uncertainty and sea surface waves. 
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